Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Unsupervised Word Mapping by Maximizing Mean Discrepancy (1811.00275v1)

Published 1 Nov 2018 in cs.CL

Abstract: Cross-lingual word embeddings aim to capture common linguistic regularities of different languages, which benefit various downstream tasks ranging from machine translation to transfer learning. Recently, it has been shown that these embeddings can be effectively learned by aligning two disjoint monolingual vector spaces through a linear transformation (word mapping). In this work, we focus on learning such a word mapping without any supervision signal. Most previous work of this task adopts parametric metrics to measure distribution differences, which typically requires a sophisticated alternate optimization process, either in the form of \emph{minmax game} or intermediate \emph{density estimation}. This alternate optimization process is relatively hard and unstable. In order to avoid such sophisticated alternate optimization, we propose to learn unsupervised word mapping by directly maximizing the mean discrepancy between the distribution of transferred embedding and target embedding. Extensive experimental results show that our proposed model outperforms competitive baselines by a large margin.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube