Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multiple Kernel $k$-Means Clustering by Selecting Representative Kernels (1811.00264v1)

Published 1 Nov 2018 in cs.LG and stat.ML

Abstract: To cluster data that are not linearly separable in the original feature space, $k$-means clustering was extended to the kernel version. However, the performance of kernel $k$-means clustering largely depends on the choice of kernel function. To mitigate this problem, multiple kernel learning has been introduced into the $k$-means clustering to obtain an optimal kernel combination for clustering. Despite the success of multiple kernel $k$-means clustering in various scenarios, few of the existing work update the combination coefficients based on the diversity of kernels, which leads to the result that the selected kernels contain high redundancy and would degrade the clustering performance and efficiency. In this paper, we propose a simple but efficient strategy that selects a diverse subset from the pre-specified kernels as the representative kernels, and then incorporate the subset selection process into the framework of multiple $k$-means clustering. The representative kernels can be indicated as the significant combination weights. Due to the non-convexity of the obtained objective function, we develop an alternating minimization method to optimize the combination coefficients of the selected kernels and the cluster membership alternatively. We evaluate the proposed approach on several benchmark and real-world datasets. The experimental results demonstrate the competitiveness of our approach in comparison with the state-of-the-art methods.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.