Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Social Learning with Questions (1811.00226v3)

Published 1 Nov 2018 in cs.GT and cs.SI

Abstract: This work studies sequential social learning (also known as Bayesian observational learning), and how private communication can enable agents to avoid herding to the wrong action/state. Starting from the seminal BHW (Bikhchandani, Hirshleifer, and Welch, 1992) model where asymptotic learning does not occur, we allow agents to ask private and finite questions to a bounded subset of their predecessors. While retaining the publicly observed history of the agents and their Bayes rationality from the BHW model, we further assume that both the ability to ask questions and the questions themselves are common knowledge. Then interpreting asking questions as partitioning information sets, we study whether asymptotic learning can be achieved with finite capacity questions. Restricting our attention to the network where every agent is only allowed to query her immediate predecessor, an explicit construction shows that a 1-bit question from each agent is enough to enable asymptotic learning.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.