Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Music Synthesis for Flexible Timbre Control (1811.00223v1)

Published 1 Nov 2018 in cs.SD, eess.AS, and stat.ML

Abstract: The recent success of raw audio waveform synthesis models like WaveNet motivates a new approach for music synthesis, in which the entire process --- creating audio samples from a score and instrument information --- is modeled using generative neural networks. This paper describes a neural music synthesis model with flexible timbre controls, which consists of a recurrent neural network conditioned on a learned instrument embedding followed by a WaveNet vocoder. The learned embedding space successfully captures the diverse variations in timbres within a large dataset and enables timbre control and morphing by interpolating between instruments in the embedding space. The synthesis quality is evaluated both numerically and perceptually, and an interactive web demo is presented.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.