Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Aligning Very Small Parallel Corpora Using Cross-Lingual Word Embeddings and a Monogamy Objective (1811.00066v1)

Published 31 Oct 2018 in cs.CL

Abstract: Count-based word alignment methods, such as the IBM models or fast-align, struggle on very small parallel corpora. We therefore present an alternative approach based on cross-lingual word embeddings (CLWEs), which are trained on purely monolingual data. Our main contribution is an unsupervised objective to adapt CLWEs to parallel corpora. In experiments on between 25 and 500 sentences, our method outperforms fast-align. We also show that our fine-tuning objective consistently improves a CLWE-only baseline.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.