Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Privacy Preserving Multi-Agent Planning with Provable Guarantees (1810.13354v2)

Published 31 Oct 2018 in cs.AI

Abstract: In privacy-preserving multi-agent planning, a group of agents attempt to cooperatively solve a multi-agent planning problem while maintaining private their data and actions. Although much work was carried out in this area in past years, its theoretical foundations have not been fully worked out. Specifically, although algorithms with precise privacy guarantees exist, even their most efficient implementations are not fast enough on realistic instances, whereas for practical algorithms no meaningful privacy guarantees exist. Secure-MAFS, a variant of the multi-agent forward search algorithm (MAFS) is the only practical algorithm to attempt to offer more precise guarantees, but only in very limited settings and with proof sketches only. In this paper we formulate a precise notion of secure computation for search-based algorithms and prove that Secure MAFS has this property in all domains.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.