Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Deep Learning on Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations (1810.13247v1)

Published 30 Oct 2018 in cs.LG, q-bio.QM, and stat.ML

Abstract: We explore how Deep Learning (DL) can be utilized to predict prognosis of acute myeloid leukemia (AML). Out of TCGA (The Cancer Genome Atlas) database, 94 AML cases are used in this study. Input data include age, 10 common cytogenetic and 23 most common mutation results; output is the prognosis (diagnosis to death, DTD). In our DL network, autoencoders are stacked to form a hierarchical DL model from which raw data are compressed and organized and high-level features are extracted. The network is written in R language and is designed to predict prognosis of AML for a given case (DTD of more than or less than 730 days). The DL network achieves an excellent accuracy of 83% in predicting prognosis. As a proof-of-concept study, our preliminary results demonstrate a practical application of DL in future practice of prognostic prediction using next-gen sequencing (NGS) data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.