Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semantic Modeling of Textual Relationships in Cross-Modal Retrieval (1810.13151v3)

Published 31 Oct 2018 in cs.MM

Abstract: Feature modeling of different modalities is a basic problem in current research of cross-modal information retrieval. Existing models typically project texts and images into one embedding space, in which semantically similar information will have a shorter distance. Semantic modeling of textural relationships is notoriously difficult. In this paper, we propose an approach to model texts using a featured graph by integrating multi-view textual relationships including semantic relations, statistical co-occurrence, and prior relations in the knowledge base. A dual-path neural network is adopted to learn multi-modal representations of information and cross-modal similarity measure jointly. We use a Graph Convolutional Network (GCN) for generating relation-aware text representations, and use a Convolutional Neural Network (CNN) with non-linearities for image representations. The cross-modal similarity measure is learned by distance metric learning. Experimental results show that, by leveraging the rich relational semantics in texts, our model can outperform the state-of-the-art models by 3.4% and 6.3% on accuracy on two benchmark datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.