Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Visual Attention Network for Low Dose CT (1810.13059v2)

Published 31 Oct 2018 in physics.med-ph and cs.CV

Abstract: Noise and artifacts are intrinsic to low dose CT (LDCT) data acquisition, and will significantly affect the imaging performance. Perfect noise removal and image restoration is intractable in the context of LDCT due to the statistical and technical uncertainties. In this paper, we apply the generative adversarial network (GAN) framework with a visual attention mechanism to deal with this problem in a data-driven/machine learning fashion. Our main idea is to inject visual attention knowledge into the learning process of GAN to provide a powerful prior of the noise distribution. By doing this, both the generator and discriminator networks are empowered with visual attention information so they will not only pay special attention to noisy regions and surrounding structures but also explicitly assess the local consistency of the recovered regions. Our experiments qualitatively and quantitatively demonstrate the effectiveness of the proposed method with clinic CT images.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.