Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Piecewise Strong Convexity of Neural Networks (1810.12805v3)

Published 30 Oct 2018 in cs.NE and cs.LG

Abstract: We study the loss surface of a feed-forward neural network with ReLU non-linearities, regularized with weight decay. We show that the regularized loss function is piecewise strongly convex on an important open set which contains, under some conditions, all of its global minimizers. This is used to prove that local minima of the regularized loss function in this set are isolated, and that every differentiable critical point in this set is a local minimum, partially addressing an open problem given at the Conference on Learning Theory (COLT) 2015; our result is also applied to linear neural networks to show that with weight decay regularization, there are no non-zero critical points in a norm ball obtaining training error below a given threshold. We also include an experimental section where we validate our theoretical work and show that the regularized loss function is almost always piecewise strongly convex when restricted to stochastic gradient descent trajectories for three standard image classification problems.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)