Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Piecewise Strong Convexity of Neural Networks (1810.12805v3)

Published 30 Oct 2018 in cs.NE and cs.LG

Abstract: We study the loss surface of a feed-forward neural network with ReLU non-linearities, regularized with weight decay. We show that the regularized loss function is piecewise strongly convex on an important open set which contains, under some conditions, all of its global minimizers. This is used to prove that local minima of the regularized loss function in this set are isolated, and that every differentiable critical point in this set is a local minimum, partially addressing an open problem given at the Conference on Learning Theory (COLT) 2015; our result is also applied to linear neural networks to show that with weight decay regularization, there are no non-zero critical points in a norm ball obtaining training error below a given threshold. We also include an experimental section where we validate our theoretical work and show that the regularized loss function is almost always piecewise strongly convex when restricted to stochastic gradient descent trajectories for three standard image classification problems.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.