Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Average-Case Quantum Advantage with Shallow Circuits (1810.12792v4)

Published 30 Oct 2018 in quant-ph and cs.CC

Abstract: Recently Bravyi, Gosset and K\"onig (Science 2018) proved an unconditional separation between the computational powers of small-depth quantum and classical circuits for a relation. In this paper we show a similar separation in the average-case setting that gives stronger evidence of the superiority of small-depth quantum computation: we construct a computational task that can be solved on all inputs by a quantum circuit of constant depth with bounded-fanin gates (a "shallow" quantum circuit) and show that any classical circuit with bounded-fanin gates solving this problem on a non-negligible fraction of the inputs must have logarithmic depth. Our results are obtained by introducing a technique to create quantum states exhibiting global quantum correlations from any graph, via a construction that we call the \emph{extended graph}. Similar results have been very recently (and independently) obtained by Coudron, Stark and Vidick (arXiv:1810.04233), and Bene Watts, Kothari, Schaeffer and Tal (STOC 2019).

Citations (34)

Summary

We haven't generated a summary for this paper yet.