Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SubSpectralNet - Using Sub-Spectrogram based Convolutional Neural Networks for Acoustic Scene Classification (1810.12642v2)

Published 30 Oct 2018 in cs.SD and eess.AS

Abstract: Acoustic Scene Classification (ASC) is one of the core research problems in the field of Computational Sound Scene Analysis. In this work, we present SubSpectralNet, a novel model which captures discriminative features by incorporating frequency band-level differences to model soundscapes. Using mel-spectrograms, we propose the idea of using band-wise crops of the input time-frequency representations and train a convolutional neural network (CNN) on the same. We also propose a modification in the training method for more efficient learning of the CNN models. We first give a motivation for using sub-spectrograms by giving intuitive and statistical analyses and finally we develop a sub-spectrogram based CNN architecture for ASC. The system is evaluated on the public ASC development dataset provided for the "Detection and Classification of Acoustic Scenes and Events" (DCASE) 2018 Challenge. Our best model achieves an improvement of +14% in terms of classification accuracy with respect to the DCASE 2018 baseline system. Code and figures are available at https://github.com/ssrp/SubSpectralNet

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Emmanouil Benetos (89 papers)
  2. Ye Wang (248 papers)
  3. Sai Samarth R Phaye (2 papers)
Citations (72)

Summary

We haven't generated a summary for this paper yet.