Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Weak-supervision for Deep Representation Learning under Class Imbalance (1810.12513v1)

Published 30 Oct 2018 in cs.LG and stat.ML

Abstract: Class imbalance is a pervasive issue among classification models including deep learning, whose capacity to extract task-specific features is affected in imbalanced settings. However, the challenges of handling imbalance among a large number of classes, commonly addressed by deep learning, have not received a significant amount of attention in previous studies. In this paper, we propose an extension of the deep over-sampling framework, to exploit automatically-generated abstract-labels, i.e., a type of side-information used in weak-label learning, to enhance deep representation learning against class imbalance. We attempt to exploit the labels to guide the deep representation of instances towards different subspaces, to induce a soft-separation of inherent subtasks of the classification problem. Our empirical study shows that the proposed framework achieves a substantial improvement on image classification benchmarks with imbalanced among large and small numbers of classes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)