Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximate Bayesian Computation via Population Monte Carlo and Classification (1810.12233v2)

Published 29 Oct 2018 in stat.ML and cs.LG

Abstract: Approximate Bayesian computation (ABC) methods can be used to sample from posterior distributions when the likelihood function is unavailable or intractable, as is often the case in biological systems. ABC methods suffer from inefficient particle proposals in high dimensions, and subjectivity in the choice of summary statistics, discrepancy measure, and error tolerance. Sequential Monte Carlo (SMC) methods have been combined with ABC to improve the efficiency of particle proposals, but suffer from subjectivity and require many simulations from the likelihood function. Likelihood-Free Inference by Ratio Estimation (LFIRE) leverages classification to estimate the posterior density directly but does not explore the parameter space efficiently. This work proposes a classification approach that approximates population Monte Carlo (PMC), where model class probabilities from classification are used to update particle weights. This approach, called Classification-PMC, blends adaptive proposals and classification, efficiently producing samples from the posterior without subjectivity. We show through a simulation study that Classification-PMC outperforms two state-of-the-art methods: ratio estimation and SMC ABC when it is computationally difficult to simulate from the likelihood.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.