Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Optimal Construction for the Barthelmann-Schwentick Normal Form on Classes of Structures of Bounded Degree (1810.12077v1)

Published 29 Oct 2018 in cs.LO

Abstract: Building on the locality conditions for first-order logic by Hanf and Gaifman, Barthelmann and Schwentick showed in 1999 that every first-order formula is equivalent to a formula of the shape $\exists x_1 \dotsc \exists x_k \forall y\,\phi$ where quantification in $\phi$ is relativised to elements of distance $\leq r$ from $y$. Such a formula will be called Barthelmann-Schwentick normal form (BSNF) in the following. However, although the proof is effective, it leads to a non-elementary blow-up of the BSNF in terms of the size of the original formula. We show that, if equivalence on the class of all structures, or even only finite forests, is required, this non-elementary blow-up is indeed unavoidable. We then examine restricted classes of structures where more efficient algorithms are possible. In this direction, we show that on any class of structures of degree $\leq 2$, BSNF can be computed in 2-fold exponential time with respect to the size of the input formula. And for any class of structures of degree $\leq d$ for some $d\geq 3$, this is possible in 3-fold exponential time. For both cases, we provide matching lower bounds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.