R-BBG$_2$: Recursive Bipartition of Bi-connected Graphs (1810.11965v1)
Abstract: Given an undirected graph $G(V, E)$, it is well known that partitioning a graph $G$ into $q$ connected subgraphs of equal or specificed sizes is in general NP-hard problem. On the other hand, it has been shown that the q-partition problem is solvable in polynomial time for q-connected graphs. For example, efficient polynomial time algorithms for finding 2-partition (bipartition) or 3-partition of 2-connected or 3-connected have been developed in the literature. In this paper, we are interested in the following problem: given a bi-connected graph $G$ of size $n$, can we partition it into two (connected) sub-graphs, $G[V_1]$ and $G[V_2]$ of sizes $n_1$ and $n_2$ such as both $G[V_1]$ and $G[V_2]$ are also bi-connected (and $n_1+n_2=n$)? We refer to this problem as the recursive bipartition problem of bi-connected graphs, denoted by R-BBG$_2$. We show that a ploynomial algorithm exists to both decide the recursive bipartion problem R-BBG$_2$ and find the corresponding bi-connected subgraphs when such a recursive bipartition exists.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.