Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A Knowledge-Grounded Multimodal Search-Based Conversational Agent (1810.11954v1)

Published 20 Oct 2018 in cs.CL and cs.AI

Abstract: Multimodal search-based dialogue is a challenging new task: It extends visually grounded question answering systems into multi-turn conversations with access to an external database. We address this new challenge by learning a neural response generation system from the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017). We introduce a knowledge-grounded multimodal conversational model where an encoded knowledge base (KB) representation is appended to the decoder input. Our model substantially outperforms strong baselines in terms of text-based similarity measures (over 9 BLEU points, 3 of which are solely due to the use of additional information from the KB.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.