Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning with Analytical Models (1810.11772v2)

Published 28 Oct 2018 in cs.PF, cs.DC, and cs.LG

Abstract: To understand and predict the performance of scientific applications, several analytical and machine learning approaches have been proposed, each having its advantages and disadvantages. In this paper, we propose and validate a hybrid approach for performance modeling and prediction, which combines analytical and machine learning models. The proposed hybrid model aims to minimize prediction cost while providing reasonable prediction accuracy. Our validation results show that the hybrid model is able to learn and correct the analytical models to better match the actual performance. Furthermore, the proposed hybrid model improves the prediction accuracy in comparison to pure machine learning techniques while using small training datasets, thus making it suitable for hardware and workload changes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.