Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DQN-TAMER: Human-in-the-Loop Reinforcement Learning with Intractable Feedback (1810.11748v1)

Published 28 Oct 2018 in cs.HC and cs.LG

Abstract: Exploration has been one of the greatest challenges in reinforcement learning (RL), which is a large obstacle in the application of RL to robotics. Even with state-of-the-art RL algorithms, building a well-learned agent often requires too many trials, mainly due to the difficulty of matching its actions with rewards in the distant future. A remedy for this is to train an agent with real-time feedback from a human observer who immediately gives rewards for some actions. This study tackles a series of challenges for introducing such a human-in-the-loop RL scheme. The first contribution of this work is our experiments with a precisely modeled human observer: binary, delay, stochasticity, unsustainability, and natural reaction. We also propose an RL method called DQN-TAMER, which efficiently uses both human feedback and distant rewards. We find that DQN-TAMER agents outperform their baselines in Maze and Taxi simulated environments. Furthermore, we demonstrate a real-world human-in-the-loop RL application where a camera automatically recognizes a user's facial expressions as feedback to the agent while the agent explores a maze.

Citations (71)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.