Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving the Stability of the Knockoff Procedure: Multiple Simultaneous Knockoffs and Entropy Maximization (1810.11378v2)

Published 26 Oct 2018 in stat.ML and cs.LG

Abstract: The Model-X knockoff procedure has recently emerged as a powerful approach for feature selection with statistical guarantees. The advantage of knockoff is that if we have a good model of the features X, then we can identify salient features without knowing anything about how the outcome Y depends on X. An important drawback of knockoffs is its instability: running the procedure twice can result in very different selected features, potentially leading to different conclusions. Addressing this instability is critical for obtaining reproducible and robust results. Here we present a generalization of the knockoff procedure that we call simultaneous multi-knockoffs. We show that multi-knockoff guarantees false discovery rate (FDR) control, and is substantially more stable and powerful compared to the standard (single) knockoff. Moreover we propose a new algorithm based on entropy maximization for generating Gaussian multi-knockoffs. We validate the improved stability and power of multi-knockoffs in systematic experiments. We also illustrate how multi-knockoffs can improve the accuracy of detecting genetic mutations that are causally linked to phenotypes.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube