A novel pyramidal-FSMN architecture with lattice-free MMI for speech recognition (1810.11352v2)
Abstract: Deep Feedforward Sequential Memory Network (DFSMN) has shown superior performance on speech recognition tasks. Based on this work, we propose a novel network architecture which introduces pyramidal memory structure to represent various context information in different layers. Additionally, res-CNN layers are added in the front to extract more sophisticated features as well. Together with lattice-free maximum mutual information (LF-MMI) and cross entropy (CE) joint training criteria, experimental results show that this approach achieves word error rates (WERs) of 3.62% and 10.89% respectively on Librispeech and LDC97S62 (Switchboard 300 hours) corpora. Furthermore, Recurrent neural network LLM (RNNLM) rescoring is applied and a WER of 2.97% is obtained on Librispeech.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.