Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Benefits of over-parameterization with EM (1810.11344v1)

Published 26 Oct 2018 in cs.LG and stat.ML

Abstract: Expectation Maximization (EM) is among the most popular algorithms for maximum likelihood estimation, but it is generally only guaranteed to find its stationary points of the log-likelihood objective. The goal of this article is to present theoretical and empirical evidence that over-parameterization can help EM avoid spurious local optima in the log-likelihood. We consider the problem of estimating the mean vectors of a Gaussian mixture model in a scenario where the mixing weights are known. Our study shows that the global behavior of EM, when one uses an over-parameterized model in which the mixing weights are treated as unknown, is better than that when one uses the (correct) model with the mixing weights fixed to the known values. For symmetric Gaussians mixtures with two components, we prove that introducing the (statistically redundant) weight parameters enables EM to find the global maximizer of the log-likelihood starting from almost any initial mean parameters, whereas EM without this over-parameterization may very often fail. For other Gaussian mixtures, we provide empirical evidence that shows similar behavior. Our results corroborate the value of over-parameterization in solving non-convex optimization problems, previously observed in other domains.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.