Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Concatenated Identical DNN (CI-DNN) to Reduce Noise-Type Dependence in DNN-Based Speech Enhancement (1810.11217v1)

Published 26 Oct 2018 in eess.AS

Abstract: Estimating time-frequency domain masks for speech enhancement using deep learning approaches has recently become a popular field of research. In this paper, we propose a mask-based speech enhancement framework by using concatenated identical deep neural networks (CI-DNNs). The idea is that a single DNN is trained under multiple input and output signal-to-noise power ratio (SNR) conditions, using targets that provide a moderate SNR gain with respect to the input and therefore achieve a balance between speech component quality and noise suppression. We concatenate this single DNN several times without any retraining to provide enough noise attenuation. Simulation results show that our proposed CI-DNN outperforms enhancement methods using classical spectral weighting rules w.r.t. total speech quality and speech intelligibility. Moreover, our approach shows similar or even a little bit better performance with much fewer trainable parameters compared with a noisy-target single DNN approach of the same size. A comparison to the conventional clean-target single DNN approach shows that our proposed CI-DNN is better in speech component quality and much better in residual noise component quality. Most importantly, our new CI-DNN generalized best to an unseen noise type, if compared to the other tested deep learning approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.