Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Packing Returning Secretaries (1810.11216v2)

Published 26 Oct 2018 in cs.DS and cs.GT

Abstract: We study online secretary problems with returns in combinatorial packing domains with $n$ candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All $2n$ arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least $0.5721 - o(1)$ for growing $n$, and an algorithm with ratio at least $0.5459$ for all $n \ge 1$. We extend all algorithms and ratios to $k \ge 2$ arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of $\Theta(n \log n)$ is always sufficient. For matroids, we show that the expected number can be reduced to $O(r \log (n/r))$, where $r \le n/2$ is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of $O(r \log n)$, where $r$ is the size of the optimum matching. For general packing, we show a lower bound of $\Omega(n \log \log n)$, even when the size of the optimum is $r = \Theta(\log n)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.