Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Task Offloading and Resource Allocation in Mobile-Edge Computing with Inter-user Task Dependency (1810.11199v2)

Published 26 Oct 2018 in cs.DC

Abstract: Mobile-edge computing (MEC) has recently emerged as a cost-effective paradigm to enhance the computing capability of hardware-constrained wireless devices (WDs). In this paper, we first consider a two-user MEC network, where each WD has a sequence of tasks to execute. In particular, we consider task dependency between the two WDs, where the input of a task at one WD requires the final task output at the other WD. Under the considered task-dependency model, we study the optimal task offloading policy and resource allocation (e.g., on offloading transmit power and local CPU frequencies) that minimize the weighted sum of the WDs' energy consumption and task execution time. The problem is challenging due to the combinatorial nature of the offloading decisions among all tasks and the strong coupling with resource allocation. To tackle this problem, we first assume that the offloading decisions are given and derive the closed-form expressions of the optimal offloading transmit power and local CPU frequencies. Then, an efficient bi-section search method is proposed to obtain the optimal solutions. Furthermore, we prove that the optimal offloading decisions follow an one-climb policy, based on which a reduced-complexity Gibbs Sampling algorithm is proposed to obtain the optimal offloading decisions. We then extend the investigation to a general multi-user scenario, where the input of a task at one WD requires the final task outputs from multiple other WDs. Numerical results show that the proposed method can significantly outperform the other representative benchmarks and efficiently achieve low complexity with respect to the call graph size.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.