Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Document Binarization via Adversarial Noise-Texture Augmentation (1810.11120v2)

Published 25 Oct 2018 in cs.CV

Abstract: Binarization of degraded document images is an elementary step in most of the problems in document image analysis domain. The paper re-visits the binarization problem by introducing an adversarial learning approach. We construct a Texture Augmentation Network that transfers the texture element of a degraded reference document image to a clean binary image. In this way, the network creates multiple versions of the same textual content with various noisy textures, thus enlarging the available document binarization datasets. At last, the newly generated images are passed through a Binarization network to get back the clean version. By jointly training the two networks we can increase the adversarial robustness of our system. Also, it is noteworthy that our model can learn from unpaired data. Experimental results suggest that the proposed method achieves superior performance over widely used DIBCO datasets.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.