Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards a Ranking Model for Semantic Layers over Digital Archives (1810.11049v1)

Published 23 Oct 2018 in cs.IR and cs.DL

Abstract: Archived collections of documents (like newspaper archives) serve as important information sources for historians, journalists, sociologists and other interested parties. Semantic Layers over such digital archives allow describing and publishing metadata and semantic information about the archived documents in a standard format (RDF), which in turn can be queried through a structured query language (e.g., SPARQL). This enables to run advanced queries by combining metadata of the documents (like publication date) and content-based semantic information (like entities mentioned in the documents). However, the results returned by structured queries can be numerous and also they all equally match the query. Thus, there is the need to rank these results in order to promote the most important ones. In this paper, we focus on this problem and propose a ranking model that considers and combines: i) the relativeness of documents to entities, ii) the timeliness of documents, and iii) the relations among the entities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.