Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Short utterance compensation in speaker verification via cosine-based teacher-student learning of speaker embeddings (1810.10884v2)

Published 25 Oct 2018 in eess.AS, cs.AI, and cs.SD

Abstract: The short duration of an input utterance is one of the most critical threats that degrade the performance of speaker verification systems. This study aimed to develop an integrated text-independent speaker verification system that inputs utterances with short duration of 2 seconds or less. We propose an approach using a teacher-student learning framework for this goal, applied to short utterance compensation for the first time in our knowledge. The core concept of the proposed system is to conduct the compensation throughout the network that extracts the speaker embedding, mainly in phonetic-level, rather than compensating via a separate system after extracting the speaker embedding. In the proposed architecture, phonetic-level features where each feature represents a segment of 130 ms are extracted using convolutional layers. A layer of gated recurrent units extracts an utterance-level feature using phonetic-level features. The proposed approach also adopts a new objective function for teacher-student learning that considers both Kullback-Leibler divergence of output layers and cosine distance of speaker embeddings layers. Experiments were conducted using deep neural networks that take raw waveforms as input, and output speaker embeddings on VoxCeleb1 dataset. The proposed model could compensate approximately 65 \% of the performance degradation due to the shortened duration.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.