Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convolutional Set Matching for Graph Similarity (1810.10866v3)

Published 23 Oct 2018 in cs.LG and stat.ML

Abstract: We introduce GSimCNN (Graph Similarity Computation via Convolutional Neural Networks) for predicting the similarity score between two graphs. As the core operation of graph similarity search, pairwise graph similarity computation is a challenging problem due to the NP-hard nature of computing many graph distance/similarity metrics. We demonstrate our model using the Graph Edit Distance (GED) as the example metric. Experiments on three real graph datasets demonstrate that our model achieves the state-of-the-art performance on graph similarity search.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.