Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Use of Magnetoresistive Random-Access Memory as Approximate Memory for Training Neural Networks (1810.10836v1)

Published 25 Oct 2018 in cs.ET and physics.app-ph

Abstract: Hardware neural networks that implement synaptic weights with embedded non-volatile memory, such as spin torque memory (ST-MRAM), are a major lead for low energy artificial intelligence. In this work, we propose an approximate storage approach for their memory. We show that this strategy grants effective control of the bit error rate by modulating the programming pulse amplitude or duration. Accounting for the devices variability issue, we evaluate energy savings, and show how they translate when training a hardware neural network. On an image recognition example, 74% of programming energy can be saved by losing only 1% on the recognition performance.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.