Papers
Topics
Authors
Recent
2000 character limit reached

Law and Adversarial Machine Learning (1810.10731v3)

Published 25 Oct 2018 in cs.LG, cs.CR, cs.CY, and stat.ML

Abstract: When machine learning systems fail because of adversarial manipulation, how should society expect the law to respond? Through scenarios grounded in adversarial ML literature, we explore how some aspects of computer crime, copyright, and tort law interface with perturbation, poisoning, model stealing and model inversion attacks to show how some attacks are more likely to result in liability than others. We end with a call for action to ML researchers to invest in transparent benchmarks of attacks and defenses; architect ML systems with forensics in mind and finally, think more about adversarial machine learning in the context of civil liberties. The paper is targeted towards ML researchers who have no legal background.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.