Emergent Mind

Robust Adversarial Learning via Sparsifying Front Ends

(1810.10625)
Published Oct 24, 2018 in stat.ML , cs.IT , cs.LG , and math.IT

Abstract

It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks. In this paper, we take a bottom-up signal processing perspective to this problem and show that a systematic exploitation of sparsity in natural data is a promising tool for defense. For linear classifiers, we show that a sparsifying front end is provably effective against $\ell_{\infty}$-bounded attacks, reducing output distortion due to the attack by a factor of roughly $K/N$ where $N$ is the data dimension and $K$ is the sparsity level. We then extend this concept to deep networks, showing that a "locally linear" model can be used to develop a theoretical foundation for crafting attacks and defenses. We also devise attacks based on the locally linear model that outperform the well-known FGSM attack. We supplement our theoretical results with experiments on the MNIST and CIFAR-10 datasets, showing the efficacy of the proposed sparsity-based defense schemes.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.