Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Semi-supervised Aspect-term Sentiment Analysis via Transformer (1810.10437v3)

Published 24 Oct 2018 in cs.CL

Abstract: Aspect-term sentiment analysis (ATSA) is a longstanding challenge in natural language understanding. It requires fine-grained semantical reasoning about a target entity appeared in the text. As manual annotation over the aspects is laborious and time-consuming, the amount of labeled data is limited for supervised learning. This paper proposes a semi-supervised method for the ATSA problem by using the Variational Autoencoder based on Transformer (VAET), which models the latent distribution via variational inference. By disentangling the latent representation into the aspect-specific sentiment and the lexical context, our method induces the underlying sentiment prediction for the unlabeled data, which then benefits the ATSA classifier. Our method is classifier agnostic, i.e., the classifier is an independent module and various advanced supervised models can be integrated. Experimental results are obtained on the SemEval 2014 task 4 and show that our method is effective with four classical classifiers. The proposed method outperforms two general semisupervised methods and achieves state-of-the-art performance.

Citations (22)

Summary

We haven't generated a summary for this paper yet.