Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BshapeNet: Object Detection and Instance Segmentation with Bounding Shape Masks (1810.10327v3)

Published 15 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Recent object detectors use four-coordinate bounding box (bbox) regression to predict object locations. Providing additional information indicating the object positions and coordinates will improve detection performance. Thus, we propose two types of masks: a bbox mask and a bounding shape (bshape) mask, to represent the object's bbox and boundary shape, respectively. For each of these types, we consider two variants: the Thick model and the Scored model, both of which have the same morphology but differ in ways to make their boundaries thicker. To evaluate the proposed masks, we design extended frameworks by adding a bshape mask (or a bbox mask) branch to a Faster R-CNN framework, and call this BshapeNet (or BboxNet). Further, we propose BshapeNet+, a network that combines a bshape mask branch with a Mask R-CNN to improve instance segmentation as well as detection. Among our proposed models, BshapeNet+ demonstrates the best performance in both tasks and achieves highly competitive results with state of the art (SOTA) models. Particularly, it improves the detection results over Faster R-CNN+RoIAlign (37.3% and 28.9%) with a detection AP of 42.4% and 32.3% on MS COCO test-dev and Cityscapes val, respectively. Furthermore, for small objects, it achieves 24.9% AP on COCO test-dev, a significant improvement over previous SOTA models. For instance segmentation, it is substantially superior to Mask R-CNN on both test datasets.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.