Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Coherence Constraints in Facial Expression Recognition (1810.10326v1)

Published 17 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Recognizing facial expressions from static images or video sequences is a widely studied but still challenging problem. The recent progresses obtained by deep neural architectures, or by ensembles of heterogeneous models, have shown that integrating multiple input representations leads to state-of-the-art results. In particular, the appearance and the shape of the input face, or the representations of some face parts, are commonly used to boost the quality of the recognizer. This paper investigates the application of Convolutional Neural Networks (CNNs) with the aim of building a versatile recognizer of expressions in static images that can be further applied to video sequences. We first study the importance of different face parts in the recognition task, focussing on appearance and shape-related features. Then we cast the learning problem in the Semi-Supervised setting, exploiting video data, where only a few frames are supervised. The unsupervised portion of the training data is used to enforce three types of coherence, namely temporal coherence, coherence among the predictions on the face parts and coherence between appearance and shape-based representation. Our experimental analysis shows that coherence constraints can improve the quality of the expression recognizer, thus offering a suitable basis to profitably exploit unsupervised video sequences. Finally we present some examples with occlusions where the shape-based predictor performs better than the appearance one.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.