Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Incremental Deep Learning for Robust Object Detection in Unknown Cluttered Environments (1810.10323v1)

Published 13 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Object detection in streaming images is a major step in different detection-based applications, such as object tracking, action recognition, robot navigation, and visual surveillance applications. In mostcases, image quality is noisy and biased, and as a result, the data distributions are disturbed and imbalanced. Most object detection approaches, such as the faster region-based convolutional neural network (Faster RCNN), Single Shot Multibox Detector with 300x300 inputs (SSD300), and You Only Look Once version 2 (YOLOv2), rely on simple sampling without considering distortions and noise under real-world changing environments, despite poor object labeling. In this paper, we propose an Incremental active semi-supervised learning (IASSL) technology for unseen object detection. It combines batch-based active learning (AL) and bin-based semi-supervised learning (SSL) to leverage the strong points of AL's exploration and SSL's exploitation capabilities. A collaborative sampling method is also adopted to measure the uncertainty and diversity of AL and the confidence in SSL. Batch-based AL allows us to select more informative, confident, and representative samples with low cost. Bin-based SSL divides streaming image samples into several bins, and each bin repeatedly transfers the discriminative knowledge of convolutional neural network (CNN) deep learning to the next bin until the performance criterion is reached. IASSL can overcome noisy and biased labels in unknown, cluttered data distributions. We obtain superior performance, compared to state-of-the-art technologies such as Faster RCNN, SSD300, and YOLOv2.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube