Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Active Ranking with Subset-wise Preferences (1810.10321v2)

Published 23 Oct 2018 in cs.LG and stat.ML

Abstract: We consider the problem of probably approximately correct (PAC) ranking $n$ items by adaptively eliciting subset-wise preference feedback. At each round, the learner chooses a subset of $k$ items and observes stochastic feedback indicating preference information of the winner (most preferred) item of the chosen subset drawn according to a Plackett-Luce (PL) subset choice model unknown a priori. The objective is to identify an $\epsilon$-optimal ranking of the $n$ items with probability at least $1 - \delta$. When the feedback in each subset round is a single Plackett-Luce-sampled item, we show $(\epsilon, \delta)$-PAC algorithms with a sample complexity of $O\left(\frac{n}{\epsilon2} \ln \frac{n}{\delta} \right)$ rounds, which we establish as being order-optimal by exhibiting a matching sample complexity lower bound of $\Omega\left(\frac{n}{\epsilon2} \ln \frac{n}{\delta} \right)$---this shows that there is essentially no improvement possible from the pairwise comparisons setting ($k = 2$). When, however, it is possible to elicit top-$m$ ($\leq k$) ranking feedback according to the PL model from each adaptively chosen subset of size $k$, we show that an $(\epsilon, \delta)$-PAC ranking sample complexity of $O\left(\frac{n}{m \epsilon2} \ln \frac{n}{\delta} \right)$ is achievable with explicit algorithms, which represents an $m$-wise reduction in sample complexity compared to the pairwise case. This again turns out to be order-wise unimprovable across the class of symmetric ranking algorithms. Our algorithms rely on a novel {pivot trick} to maintain only $n$ itemwise score estimates, unlike $O(n2)$ pairwise score estimates that has been used in prior work. We report results of numerical experiments that corroborate our findings.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.