Active Ranking with Subset-wise Preferences (1810.10321v2)
Abstract: We consider the problem of probably approximately correct (PAC) ranking $n$ items by adaptively eliciting subset-wise preference feedback. At each round, the learner chooses a subset of $k$ items and observes stochastic feedback indicating preference information of the winner (most preferred) item of the chosen subset drawn according to a Plackett-Luce (PL) subset choice model unknown a priori. The objective is to identify an $\epsilon$-optimal ranking of the $n$ items with probability at least $1 - \delta$. When the feedback in each subset round is a single Plackett-Luce-sampled item, we show $(\epsilon, \delta)$-PAC algorithms with a sample complexity of $O\left(\frac{n}{\epsilon2} \ln \frac{n}{\delta} \right)$ rounds, which we establish as being order-optimal by exhibiting a matching sample complexity lower bound of $\Omega\left(\frac{n}{\epsilon2} \ln \frac{n}{\delta} \right)$---this shows that there is essentially no improvement possible from the pairwise comparisons setting ($k = 2$). When, however, it is possible to elicit top-$m$ ($\leq k$) ranking feedback according to the PL model from each adaptively chosen subset of size $k$, we show that an $(\epsilon, \delta)$-PAC ranking sample complexity of $O\left(\frac{n}{m \epsilon2} \ln \frac{n}{\delta} \right)$ is achievable with explicit algorithms, which represents an $m$-wise reduction in sample complexity compared to the pairwise case. This again turns out to be order-wise unimprovable across the class of symmetric ranking algorithms. Our algorithms rely on a novel {pivot trick} to maintain only $n$ itemwise score estimates, unlike $O(n2)$ pairwise score estimates that has been used in prior work. We report results of numerical experiments that corroborate our findings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.