Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Binary Optimization Approach for Constrained K-Means Clustering (1810.10134v2)

Published 24 Oct 2018 in cs.CV and cs.LG

Abstract: K-Means clustering still plays an important role in many computer vision problems. While the conventional Lloyd method, which alternates between centroid update and cluster assignment, is primarily used in practice, it may converge to a solution with empty clusters. Furthermore, some applications may require the clusters to satisfy a specific set of constraints, e.g., cluster sizes, must-link/cannot-link. Several methods have been introduced to solve constrained K-Means clustering. Due to the non-convex nature of K-Means, however, existing approaches may result in sub-optimal solutions that poorly approximate the true clusters. In this work, we provide a new perspective to tackle this problem. Particularly, we reconsider constrained K-Means as a Binary Optimization Problem and propose a novel optimization scheme to search for feasible solutions in the binary domain. This approach allows us to solve constrained K-Means where multiple types of constraints can be simultaneously enforced. Experimental results on synthetic and real datasets show that our method provides better clustering accuracy with faster runtime compared to several commonly used techniques.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube