Emergent Mind

Smoothed Online Optimization for Regression and Control

(1810.10132)
Published Oct 23, 2018 in cs.LG , cs.DS , math.OC , and stat.ML

Abstract

We consider Online Convex Optimization (OCO) in the setting where the costs are $m$-strongly convex and the online learner pays a switching cost for changing decisions between rounds. We show that the recently proposed Online Balanced Descent (OBD) algorithm is constant competitive in this setting, with competitive ratio $3 + O(1/m)$, irrespective of the ambient dimension. Additionally, we show that when the sequence of cost functions is $\epsilon$-smooth, OBD has near-optimal dynamic regret and maintains strong per-round accuracy. We demonstrate the generality of our approach by showing that the OBD framework can be used to construct competitive algorithms for a variety of online problems across learning and control, including online variants of ridge regression, logistic regression, maximum likelihood estimation, and LQR control.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.