Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Ain't Nobody Got Time For Coding: Structure-Aware Program Synthesis From Natural Language (1810.09717v2)

Published 23 Oct 2018 in cs.LG, cs.AI, cs.PL, and stat.ML

Abstract: Program synthesis from natural language (NL) is practical for humans and, once technically feasible, would significantly facilitate software development and revolutionize end-user programming. We present SAPS, an end-to-end neural network capable of mapping relatively complex, multi-sentence NL specifications to snippets of executable code. The proposed architecture relies exclusively on neural components, and is trained on abstract syntax trees, combined with a pretrained word embedding and a bi-directional multi-layer LSTM for processing of word sequences. The decoder features a doubly-recurrent LSTM, for which we propose novel signal propagation schemes and soft attention mechanism. When applied to a large dataset of problems proposed in a previous study, SAPS performs on par with or better than the method proposed there, producing correct programs in over 92% of cases. In contrast to other methods, it does not require post-processing of the resulting programs, and uses a fixed-dimensional latent representation as the only interface between the NL analyzer and the source code generator.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.