Papers
Topics
Authors
Recent
2000 character limit reached

Properties of a Generalized Divergence Related to Tsallis Relative Entropy (1810.09503v2)

Published 22 Oct 2018 in cs.IT and math.IT

Abstract: In this paper, we investigate the partition inequality, joint convexity, and Pinsker's inequality, for a divergence that generalizes the Tsallis Relative Entropy and Kullback-Leibler divergence. The generalized divergence is defined in terms of a deformed exponential function, which replaces the Tsallis $q$-exponential. We also constructed a family of probability distributions related to the generalized divergence. We found necessary and sufficient conditions for the partition inequality to be satisfied. A sufficient condition for the joint convexity was established. We proved that the generalized divergence satisfies the partition inequality, and is jointly convex, if, and only if, it coincides with the Tsallis relative entropy. As an application of partition inequality, a criterion for the Pinsker's inequality was found.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.