Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Node Representation Learning for Directed Graphs (1810.09176v4)

Published 22 Oct 2018 in cs.SI, cs.LG, and stat.ML

Abstract: We propose a novel approach for learning node representations in directed graphs, which maintains separate views or embedding spaces for the two distinct node roles induced by the directionality of the edges. We argue that the previous approaches either fail to encode the edge directionality or their encodings cannot be generalized across tasks. With our simple \emph{alternating random walk} strategy, we generate role specific vertex neighborhoods and train node embeddings in their corresponding source/target roles while fully exploiting the semantics of directed graphs. We also unearth the limitations of evaluations on directed graphs in previous works and propose a clear strategy for evaluating link prediction and graph reconstruction in directed graphs. We conduct extensive experiments to showcase our effectiveness on several real-world datasets on link prediction, node classification and graph reconstruction tasks. We show that the embeddings from our approach are indeed robust, generalizable and well performing across multiple kinds of tasks and graphs. We show that we consistently outperform all baselines for node classification task. In addition to providing a theoretical interpretation of our method we also show that we are considerably more robust than the other directed graph approaches.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.