Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Constituent Parsing as Sequence Labeling (1810.08994v2)

Published 21 Oct 2018 in cs.CL

Abstract: We introduce a method to reduce constituent parsing to sequence labeling. For each word w_t, it generates a label that encodes: (1) the number of ancestors in the tree that the words w_t and w_{t+1} have in common, and (2) the nonterminal symbol at the lowest common ancestor. We first prove that the proposed encoding function is injective for any tree without unary branches. In practice, the approach is made extensible to all constituency trees by collapsing unary branches. We then use the PTB and CTB treebanks as testbeds and propose a set of fast baselines. We achieve 90.7% F-score on the PTB test set, outperforming the Vinyals et al. (2015) sequence-to-sequence parser. In addition, sacrificing some accuracy, our approach achieves the fastest constituent parsing speeds reported to date on PTB by a wide margin.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.