Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Data-Driven Tight Frame for Cryo-EM Image Denoising and Conformational Classification (1810.08829v2)

Published 20 Oct 2018 in stat.CO and eess.IV

Abstract: The cryo-electron microscope (cryo-EM) is increasingly popular these years. It helps to uncover the biological structures and functions of macromolecules. In this paper, we address image denoising problem in cryo-EM. Denoising the cryo-EM images can help to distinguish different molecular conformations and improve three dimensional reconstruction resolution. We introduce the use of data-driven tight frame (DDTF) algorithm for cryo-EM image denoising. The DDTF algorithm is closely related to the dictionary learning. The advantage of DDTF algorithm is that it is computationally efficient, and can well identify the texture and shape of images without using large data samples. Experimental results on cryo-EM image denoising and conformational classification demonstrate the power of DDTF algorithm for cryo-EM image denoising and classification.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.