Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Personas from Dialogue with Attentive Memory Networks (1810.08717v1)

Published 19 Oct 2018 in cs.CL

Abstract: The ability to infer persona from dialogue can have applications in areas ranging from computational narrative analysis to personalized dialogue generation. We introduce neural models to learn persona embeddings in a supervised character trope classification task. The models encode dialogue snippets from IMDB into representations that can capture the various categories of film characters. The best-performing models use a multi-level attention mechanism over a set of utterances. We also utilize prior knowledge in the form of textual descriptions of the different tropes. We apply the learned embeddings to find similar characters across different movies, and cluster movies according to the distribution of the embeddings. The use of short conversational text as input, and the ability to learn from prior knowledge using memory, suggests these methods could be applied to other domains.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.