Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Understanding Deep Convolutional Networks through Gestalt Theory (1810.08697v1)

Published 19 Oct 2018 in cs.CV

Abstract: The superior performance of deep convolutional networks over high-dimensional problems have made them very popular for several applications. Despite their wide adoption, their underlying mechanisms still remain unclear with their improvement procedures still relying mainly on a trial and error process. We introduce a novel sensitivity analysis based on the Gestalt theory for giving insights into the classifier function and intermediate layers. Since Gestalt psychology stipulates that perception can be a product of complex interactions among several elements, we perform an ablation study based on this concept to discover which principles and image context significantly contribute in the network classification. Our results reveal that ConvNets follow most of the visual cortical perceptual mechanisms defined by the Gestalt principles at several levels. The proposed framework stimulates specific feature maps in classification problems and reveal important network attributes that can produce more explainable network models.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.