Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Autonomous Functional Locomotion in a Tendon-Driven Limb via Limited Experience (1810.08615v1)

Published 19 Oct 2018 in cs.RO, cs.LG, and cs.NE

Abstract: Robots will become ubiquitously useful only when they can use few attempts to teach themselves to perform different tasks, even with complex bodies and in dynamical environments. Vertebrates, in fact, successfully use trial-and-error to learn multiple tasks in spite of their intricate tendon-driven anatomies. Roboticists find such tendon-driven systems particularly hard to control because they are simultaneously nonlinear, under-determined (many tendon tensions combine to produce few net joint torques), and over-determined (few joint rotations define how many tendons need to be reeled-in/payed-out). We demonstrate---for the first time in simulation and in hardware---how a model-free approach allows few-shot autonomous learning to produce effective locomotion in a 3-tendon/2-joint tendon-driven leg. Initially, an artificial neural network fed by sparsely sampled data collected using motor babbling creates an inverse map from limb kinematics to motor activations, which is analogous to juvenile vertebrates playing during development. Thereafter, iterative reward-driven exploration of candidate motor activations simultaneously refines the inverse map and finds a functional locomotor limit-cycle autonomously. This biologically-inspired algorithm, which we call G2P (General to Particular), enables versatile adaptation of robots to changes in the target task, mechanics of their bodies, and environment. Moreover, this work empowers future studies of few-shot autonomous learning in biological systems, which is the foundation of their enviable functional versatility.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.