Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Local cliques in ER-perturbed random geometric graphs (1810.08383v3)

Published 19 Oct 2018 in cs.CG

Abstract: Random graphs are mathematical models that have applications in a wide range of domains. We study the following model where one adds Erd\H{o}s--R\'enyi (ER) type perturbation to a random geometric graph. More precisely, assume $G_\mathcal{X}{*}$ is a random geometric graph sampled from a nice measure on a metric space $\mathcal{X} = (X,d)$. The input observed graph $\widehat{G}(p,q)$ is generated by removing each existing edge from $G_\mathcal{X}*$ with probability $p$, while inserting each non-existent edge to $G_\mathcal{X}{*}$ with probability $q$. We refer to such random $p$-deletion and $q$-insertion as ER-perturbation. Although these graphs are related to the objects in the continuum percolation theory, our understanding of them is still rather limited. In this paper we consider a localized version of the classical notion of clique number for the aforementioned ER-perturbed random geometric graphs: Specifically, we study the edge clique number for each edge in a graph, defined as the size of the largest clique(s) in the graph containing that edge. The clique number of the graph is simply the largest edge clique number. Interestingly, given a ER-perturbed random geometric graph, we show that the edge clique number presents two fundamentally different types of behaviors, depending on which "type" of randomness it is generated from. As an application of the above results, we show that by using a filtering process based on the edge clique number, we can recover the shortest-path metric of the random geometric graph $G_\mathcal{X}*$ within a multiplicative factor of $3$, from an ER-perturbed observed graph $\widehat{G}(p,q)$, for a significantly wider range of insertion probability $q$ than in previous work.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.