Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formalizing computability theory via partial recursive functions (1810.08380v3)

Published 19 Oct 2018 in cs.LO and math.LO

Abstract: We present an extension to the $\mathtt{mathlib}$ library of the Lean theorem prover formalizing the foundations of computability theory. We use primitive recursive functions and partial recursive functions as the main objects of study, and we use a constructive encoding of partial functions such that they are executable when the programs in question provably halt. Main theorems include the construction of a universal partial recursive function and a proof of the undecidability of the halting problem. Type class inference provides a transparent way to supply G\"{o}del numberings where needed and encapsulate the encoding details.

Citations (18)

Summary

We haven't generated a summary for this paper yet.