Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TS-CNN: Text Steganalysis from Semantic Space Based on Convolutional Neural Network (1810.08136v1)

Published 18 Oct 2018 in cs.CR

Abstract: Steganalysis has been an important research topic in cybersecurity that helps to identify covert attacks in public network. With the rapid development of natural language processing technology in the past two years, coverless steganography has been greatly developed. Previous text steganalysis methods have shown unsatisfactory results on this new steganography technique and remain an unsolved challenge. Different from all previous text steganalysis methods, in this paper, we propose a text steganalysis method(TS-CNN) based on semantic analysis, which uses convolutional neural network(CNN) to extract high-level semantic features of texts, and finds the subtle distribution differences in the semantic space before and after embedding the secret information. To train and test the proposed model, we collected and released a large text steganalysis(CT-Steg) dataset, which contains a total number of 216,000 texts with various lengths and various embedding rates. Experimental results show that the proposed model can achieve nearly 100\% precision and recall, outperforms all the previous methods. Furthermore, the proposed model can even estimate the capacity of the hidden information inside. These results strongly support that using the subtle changes in the semantic space before and after embedding the secret information to conduct text steganalysis is feasible and effective.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.